Modeling and control of Rankine based waste heat recovery systems for heavy duty trucks

نویسندگان

  • V. Grelet
  • P. Dufour
  • M. Nadri
  • T. Reiche
چکیده

This paper presents a control oriented model development for waste heat recovery Rankine based control systems in heavy duty trucks. Waste heat recovery systems, such as Rankine cycle, are promising solutions to improve the fuel efficiency of heavy duty engines. Due to the highly transient operating conditions, improving the control strategy of those systems is an important step to their integration into a vehicle. The system considered here is recovering heat from both EGR and exhaust in a serial arrangement and use a mixture of water and ethanol as working fluid. The paper focuses on a comparison of a classical PID controller which is the state of the art in the automotive industry and a nonlinear model based controller in a simulation environment. The nonlinear model based controller shows better performance than the PID one and ensures safe operation of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the waste heat recovery system modeling is improved by including evaporator models that combine the fini...

متن کامل

Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. ...

متن کامل

Increasing waste heat recovery from an internal combustion engine by a dual-loop non-organic Rankine Cycle

This research proposes the combination of a dual-loop non-organic Rankine cycle (DNORC) with an internal combustion engine to increase the output power of the recovery system by focusing on the increase in the energy input and system efficiency. In doing so, it investigates the strategy of increasing the mean effective temperature of heat addition in the high-temperature Rankine cycle (HTRC) (t...

متن کامل

A steam Rankine cycle with two-stage pumping to enhance the waste heat recovery from internal combustion engines

In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean ...

متن کامل

Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

A dual loop organic Rankine cycle (DORC) system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE), and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT) and low-temperature (LT) cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015